
EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 1

EGC 455

SOC Design &Verification

Functional Verification of Hardware

Baback Izadi
Division of Engineering Programs
bai@engr.newpaltz.edu

As presented by IBM

SUNY – New Paltz
Elect. & Comp. Eng.

Speakers

 IBM-Z Hardware Verification
 Shaun Uldrikis – Core Verification Co-lead
 Luke Buschmann – Unit Verification Co-lead

1

2

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 2

SUNY – New Paltz
Elect. & Comp. Eng.

References

 Slide decks
 John Goss (IBM)
 Bruce Wile (IBM)

SUNY – New Paltz
Elect. & Comp. Eng.

Day 3
 Hardware Failures the Customer Sees

 Hardware Failures Verification Sees

 Calculator Example 1

 Calculator Example 2

 Calculator Example 3

3

4

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 3

SUNY – New Paltz
Division of Engineering Programs

Types of Errors

Errors and their significance

SUNY – New Paltz
Elect. & Comp. Eng.

Hardware Failures the Customer Sees
 Device reports Parity/ECC errors often

 Performance is low (but device functional)

 Device writes out wrong data.

 Device contains security holes (external user able to read
internal data. Internal operation able to read data which
should be inaccessible.)

 Device hangs (becomes non-responsive)

 Device feature doesn't work

Which is the most impactful error type?
Which has the least impact?

5

6

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 4

SUNY – New Paltz
Elect. & Comp. Eng.

Customer Errors by Severity
1. Data Integrity (DI) error – Device writes out wrong data.

2. Security error – Device contains security holes (external
user able to read internal data. Internal operation able to
read data which should be inaccessible.)

3. Specification Miss – Device feature doesn't work.

4. Reliability error – Device reports Parity/ECC errors often

5. Reliability error – Device hangs (becomes non-responsive)

6. Performance miss – Performance is low

SUNY – New Paltz
Elect. & Comp. Eng.

Hardware Failures Verif Sees
 Bit(s) stuck On or Off - (Memory, Array, Bus, signal, etc)

 Interface Protocol Violations

 Parity/ECC errors

 Out-of-Order Rules Violation

 Memory/Array Access problems
 wrong lookup address

 bad data returned

 read + write collision

 Operation Result Failure
 Expected signal vs. actual signal mismatch

 Hardware error checker

 Asynchronous signal hold problems

7

8

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 5

SUNY – New Paltz
Elect. & Comp. Eng.

Quick Education
Be aware of the design bit ordering definitions

 signal<0:31> -Vector of bits listed in Big Endian notation

 signal<31:0> -Vector of bits listed in Little Endian notation

This matters in order to drive/monitor specific bits.

Converting bits to/from hexadecimal -The right most bit
always has a value of 1.

10 1011 1 0 1 0 1 1 ===> 0x2B ==> 43 d

32, 16, 8, 4, 2, 1

SUNY – New Paltz
Elect. & Comp. Eng.

Shift Left/Right

 Shift the entire value, with bits dropping off either end as
needed. A zero is always shifted into the new vacant place.

Left Shift of a 4 bit number
 0011 (3) << 1 == 0110 (6)
 0011 (3) << 3 == 1000 (8) (1 bit shifted off the end)

Right Shift of a 5 bit number
 10111(23) >> 2 == 00101 (5)

<< Left shift of 1 is the same as multiplying a value by 2.

>> Right shift of 1 is the same as dividing a value by 2.

9

10

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 6

SUNY – New Paltz
Division of Engineering Programs

Calc1

Calculator Example

SUNY – New Paltz
Elect. & Comp. Eng.

Source Material

 Book: Comprehensive Functional Verification
Copyright Wile, Roesner, Goss & Elsevier Publishers

11

12

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 7

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Function
 Calculator has 4 functions, using 32bit operands

1. Add 2 unsigned operands
2. Subtract 2 unsigned operands
3. Left shift first op. by last 5 bits of second op.
4. Right shift first op. by last 5 bits of second op.

 4 parallel, unidirectional Input/Output ports.

 Each port can send in 1 command until it gets a response.

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 I/O

c_clk

out_resp2< 0:1 >

req1_data_in< 0:31 >

req1_cmd_in < 0:3 >

out_data1< 0:31 >

req4_cmd_in< 0:3 >

req3_cmd_in< 0:3 >

req2_cmd_in< 0:3 >

req4_data_in< 0:31 >

req3_data_in< 0:31 >

req2_data_in< 0:31 >

reset< 0:7 >

out_data4< 0:31 >

out_data3< 0:31 >

out_data2< 0:31 >

out_resp4< 0:1 >

out_resp3< 0:1 >

out_resp1< 0:1 >

calc_top
(Design

Under Test)

13

14

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 8

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Block Diagram

SHIFT

Priority
(Arbiter)

Port
1

Port
2

Port
3

Port
4

Port
1

Port
2

Port
3

Port
4

ADDER

ARB

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Details - Requests
 The opcodes for commands on cmd_in<0..3> are shown below.

 Operand1 enters the calculator on data_in<0..31> during the
same cycle that the command is issued.
Operand2 follows one cycle after operand1.

Encoding of Commands

code operation

0 no operation
1 add operand1 to operand2
2 subtract operand2 from operand1
5 shift operand1 to the left by operand2 places.
6 shift operand1 to the right by operand2 places.

15

16

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 9

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Details - Responses

 The opcodes for responses on out_resp<0..1> are below.

 Valid result data exits the calculator on out_data<0..31> during
the same cycle as the response. (example timing diagram on
following page)

Encoding of Responses

code operation
0 no response
1 operation completed successfully
2 op. unsuccessful (invalid opcode, overflow or underflow)
3 internal error encountered

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Function

 Calculator can handle 4 requests in parallel
1. All requestors have equal priority
2. Priority logic works on first come first serve algorithm
3. Priority logic allows for 1 add or subtract at a time and one

shift operation at a time

17

18

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 10

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Port Timing

req1_data_in<0:31>

req1_cmd_in<0:3>

out_data1<0:31>

out_resp1<0:1>

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Verification
 What's in your test plan?

Recap:
 Calculator has 4 functions, using 32bit operands

1. Add(1) /Subtract(2) 2 unsigned operands
2. Left(5) /Right(6) shift first op. by last 5 bits of second op.

 4 parallel, uni-directional Input/Output ports.

 Each port can send in 1 command until it gets a response.

 Responses: 1:Good, 2:Over/Underflow/Invalid, 3:Intrnl error

 All requestors have equal priority.

 Priority logic works on first come first serve algorithm

 Allows for 1 add/subtract and 1 shift, at a time

19

20

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 11

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Test Plan Part 1

 Single Port:
1. Test 1 Add (without overflow)
2. Test 1 Subtract (without overflow)
3. Test 1 Shift left
4. Test 1 Shift right
5. Test Adds/Subtract with full range of allowed values
 0-0xFFFFFFFF

6. Test Shift with full range of allowed values
1. What is the full range of values?

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Environment

CALC1

Gen1

Mon1 Mon2

Mon1 Mon2

Mon1 Mon2

ClockReset

Gen1

Gen1

Gen1

Mon1 Mon2

Unit Monitor

21

22

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 12

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Response errors

 Invalid Command:
 What does that mean?
 How can we cause that response?

Encoding of Commands

code operation

0 no operation
1 add operand1 to operand2
2 subtract operand2 from operand1
5 shift operand1 to the left by operand2 places.
6 shift operand1 to the right by operand2 places.

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Test Plan cont.

4-bit command opcode so….

 Test unexpected command opcodes (3-4, 7-15)

Encoding of Commands

code operation

0 no operation
1 add operand1 to operand2
2 subtract operand2 from operand1
5 shift operand1 to the left by operand2 places.
6 shift operand1 to the right by operand2 places.

23

24

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 13

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Response errors

 Overflow Condition? How do we cause that?

 Underflow Condition?

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Response errors

 Overflow Condition: (Add)
 If either operand have an MSB of 1, and the result of the add

flips the MSB.
 0xFFFFFFFC + 0x5 = 0x1:00000001

 Underflow Condition: (Subtract)
 If the second operand is larger than the first operand.

25

26

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 14

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Test Plan cont.

 Calculator can handle 4 requests in parallel
1. All requestors have equal priority
2. Priority logic works on first come first serve

algorithm
3. Priority logic allows for 1 add or subtract at a time and one

shift operation at a time

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Test Plan part 2

1. Test 2 ports together

2. Test all ports together

3. Test all ports, with varying delays per port.

4. Validate priority fairness

27

28

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 15

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Priority

 How would you validate the Fairness of the priority logic?

 What would be a case where the priority rules were not
followed look like?

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Priority

Above: Requests Below: Responses

Cyc 1 Cyc 5 Cyc 7 Cyc 9 Cyc 11 Cyc 13 Cyc 15 Cyc 17

P1A P1Sh P1A

P2Sh P2Sh P2A

P3Sh P3A P3A

P4A P4A P4Sh

Cyc 4 Cyc 6 Cyc 8 Cyc 10 Cyc 12 Cyc 14 Cyc 16 Cyc 18

P1 Resp P1 Resp P1 Resp

P2 Resp P2 Resp P2 Resp

P3 Resp P3 Resp P3 Resp

P4 Resp P4 Resp P4 Resp

29

30

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 16

SUNY – New Paltz
Elect. & Comp. Eng.

Above: Requests Below: Responses

Cyc 1 Cyc 5 Cyc 7 Cyc 9 Cyc 11 Cyc 13 Cyc 15 Cyc 17

P1A P1Sh P1A

P2Sh P2Sh P2A

P3Sh P3A P3A

P4A P4A P4Sh

Calc1 Priority example 1

Cyc 4 Cyc 6 Cyc 8 Cyc 10 Cyc 12 Cyc 14 Cyc 16 Cyc 18

P1 Resp P1 Resp P1 Resp

P2 Resp P2 Resp P2 Resp

P3 Resp P3 Resp P3 Resp

P4 Resp P4 Resp P4 Resp

Is this function ok?

SUNY – New Paltz
Elect. & Comp. Eng.

Calc1 Priority example

 Summary:
 Record the cycle when an operation was issued
 When that port gets a response, test the cycle time against the

other ports outstanding request cycle start time.

31

32

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 17

SUNY – New Paltz
Division of Engineering Programs

Calc2

Enhancement

SUNY – New Paltz
Elect. & Comp. Eng.

Calc2: Modified Calc1 Design

Each port can now have up to 4 outstanding commands in the system

 Up to 16 total commands possible

 Out-of-order response may occur
 Depends on backlog in adder and shifter

 Requires 2 bit “tag” identifier for each port

33

34

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 18

SUNY – New Paltz
Elect. & Comp. Eng.

Calc2 Port Timing

req1_cmd_in

req1_data_in

req1_tag_in

req_resp1
req_data1
req_tag1

SUNY – New Paltz
Elect. & Comp. Eng.

Calc2: How is testing impacted?

 By supporting up to 4 commands per port, how does that
impact the driving?

 How would you change the result checking process?

 How would you change the priority checking algorithm?

35

36

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 19

SUNY – New Paltz
Elect. & Comp. Eng.

Calc2: How is testing impacted?

 By supporting up to 4 commands per port, how does that
impact the driving?
 Design must support a deeper buffer to handle 16 ops.
 Maybe specifically add cases to drive 16 commands of the same

type to stress the buffer.

 How would you change the result checking process?
 Need to use the new Tag field to reference the correct op.

 How would you change the priority checking algorithm?
 A port is allowed to skip ops of the opposite type now.

SUNY – New Paltz
Elect. & Comp. Eng.

Calc2: Test Plan

 With Multiple Ports in Use:
 Test operations of the same type on each port, to a max of 4 per port.
 Test operations of any type, on each port, to a max of 4 per port.
 (Update Priority checker)

37

38

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 20

SUNY – New Paltz
Elect. & Comp. Eng.

Verifying Priority

 How would you keep track of transactions, so you can say if
things are fair?
 What would you record about each transaction?

SUNY – New Paltz
Elect. & Comp. Eng.

Verifying Priority: Options

 Record the Cycle number, and operation type

 Store info into 1 queue per port

 At response time, remove the info from the front of the
queue for that port. Look at the start cycle number of that
completed request. Test that cycle number and type against
all other queues

Index0 Index1 Index2 Index3

Port1 Cyc1, Add Cyc3, Shift Cyc5, Add

Port 2 Cyc1, Shift Cyc3, Shift Cyc5, Add

Port 3 Cyc1, Shift Cyc3, Add Cyc5, Add

Port 4 Cyc1, Add Cyc3, Add Cyc5, Shift

39

40

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 21

SUNY – New Paltz
Elect. & Comp. Eng.

Option example pg 1

After Index0 Index1 Index2 Index3

Port1 Cyc1, Add Cyc3, Shift Cyc5, Add

Port 2 Cyc3, Shift Cyc5, Add

Port 3 Cyc1, Shift Cyc3, Add Cyc5, Add

Port 4 Cyc3, Add Cyc5, Shift

Cycle 4: P2 Resp + P4 Resp

Before Index0 Index1 Index2 Index3

Port1 Cyc1, Add Cyc3, Shift Cyc5, Add

Port 2 Cyc1, Shift Cyc3, Shift Cyc5, Add

Port 3 Cyc1, Shift Cyc3, Add Cyc5, Add

Port 4 Cyc1, Add Cyc3, Add Cyc5, Shift

SUNY – New Paltz
Elect. & Comp. Eng.

Option example pg 2

After Index0 Index1 Index2 Index3

Port1 Cyc3, Shift Cyc5, Add

Port 2 Cyc3, Shift Cyc5, Add

Port 3 Cyc3, Add Cyc5, Shift

Port 4 Cyc3 Add Cyc5, Shift

Cycle 6: P1 Resp + P3 Resp

Before Index0 Index1 Index2 Index3

Port1 Cyc1, Add Cyc3, Shift Cyc5, Add

Port 2 Cyc3, Shift Cyc5, Add

Port 3 Cyc1, Shift Cyc3, Add Cyc5, Add

Port 4 Cyc3, Add Cyc5, Shift

41

42

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 22

SUNY – New Paltz
Elect. & Comp. Eng.

Option example pg 3

After Index0 Index1 Index2 Index3

Port1 Cyc3, Shift Cyc5, Add

Port 2 Cyc5, Add

Port 3 Cyc3, Add Cyc5, Shift

Port 4 Cyc5, Shift

Cycle 8: P2 Resp + P4 Resp

Before Index0 Index1 Index2 Index3

Port1 Cyc3, Shift Cyc5, Add

Port 2 Cyc3, Shift Cyc5, Add

Port 3 Cyc3, Add Cyc5, Shift

Port 4 Cyc3 Add Cyc5, Shift

SUNY – New Paltz
Elect. & Comp. Eng.

Option example pg 4

After Index0 Index1 Index2 Index3

Port1 Cyc3, Shift Cyc5, Add

Port 2 Cyc5, Add

Port 3 Cyc5, Shift

Port 4 Cyc5, Shift

Cycle 10: P3 Resp

Before Index0 Index1 Index2 Index3

Port1 Cyc3, Shift Cyc5, Add

Port 2 Cyc5, Add

Port 3 Cyc3, Add Cyc5, Shift

Port 4 Cyc5, Shift

43

44

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 23

SUNY – New Paltz
Elect. & Comp. Eng.

Option example pg 5

After Index0 Index1 Index2 Index3

Port1 Cyc3, Shift Cyc5, Add

Port 2

Port 3 Cyc5, Shift

Port 4 Cyc5, Shift

Cycle 12: P2 Resp + P4 Resp

Before Index0 Index1 Index2 Index3

Port1 Cyc3, Shift Cyc5, Add

Port 2 Cyc5, Add

Port 3 Cyc5, Shift

Port 4 Cyc5, Shift

SUNY – New Paltz
Division of Engineering Programs

Calc3

Now it acts like a CPU

45

46

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 24

SUNY – New Paltz
Elect. & Comp. Eng.

Calc3 Design Spec
 Design now has 16 internal data registers
 Arithmetic operands no longer sent by requestor

 Operand data is read internally from registers

 Four new commands:
 Two new commands added to access registers
 Fetch from register x
 Store to register x

 Two new branch commands
 Successful branch causes next command from that port to be

skipped

SUNY – New Paltz
Elect. & Comp. Eng.

Calc3 Design Overview

 Each port requestor is sending an instruction stream

 In the first two Calc designs, the data accompanied the
command. But in this design, the arithmetic ops reference
operand registers internal to the design. Therefore,
instruction ordering (“instruction stream”) concepts must be
obeyed by the design so that within each port, the commands
may only proceed out-of-order when the operand registers
do not conflict.

 The ordering rules are shown in the following slides.

47

48

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 25

SUNY – New Paltz
Elect. & Comp. Eng.

I/O Specification
For each requestor X:
Inputs:

reqX_cmd(0:3)
 0001 add: adds contents of d1 to d2 and stores in r1
 0010 subtract: subtracts contents of d2 from d1 and stores in r1
 0101 shift left: shifts contents of d1 to the left d2(27:31) places and stores in r1
 0110 shift right: shifts contents of d1 to the right d2(27:31) places and stores in r1
 1001 store: stores reqX_data(0:31) into r1
 1010 fetch: fetches contents of d1 and outputs it on out_dataX(0:31)
 1100 branch if zero: skip next valid command if contents of d1 are 0
 1101 branch if equal: skip next valid command if contents of d1 and d2 are equal

reqX_d1(0:3) - operand register to read
reqX_d2(0:3) - operand register to read
reqX_r1(0:3) - operand register to write
reqX_tag(0:1)
reqX_data(0:31)

Outputs:
outX_resp(0:1)

• 00: No Response
• 01: Successful completion
• 10: overflow/underflow error
• 11 : Command skipped due to branch

outX_tag(0:1)
outX_data(0:31)

SUNY – New Paltz
Elect. & Comp. Eng.

I/O Timing

 Fastest multiple command (any cmd type) timing
(example is if only one requestor is sending commands):

reqX_cmd(0:3)
reqX_d1(0:3)
reqX_d2(0:3)
reqX_r1(0:3)

reqX_tag(0:1)
out_respX(0:1)

out_tagX(0:1)

'00'b '11'b'10'b'01'b '00'b

'10'b'01'b

....
'00'b

49

50

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 26

SUNY – New Paltz
Elect. & Comp. Eng.

Command Ordering Rules

 Within each requestor’s (port’s) instruction stream, operations
can complete out of order with the following restrictions:
1. Operands (d1, d2) cannot be used if prior instruction in stream

writes (result r1) to either operand and prior instruction has not
completed.

2. Results (r1) cannot be written if either of the prior command
operands (d1, d2) use the same register as R1.

3. Same R1 (result) values from different instructions must
complete in order.

4. There are no restrictions of this type across different requestors.

SUNY – New Paltz
Elect. & Comp. Eng.

Command Ordering Summary
 Basically, things must complete in order when:
 Write after Write ordering -Two operations write the same register.
 Read after Write ordering - An operation reads a register an earlier

op will write.
 Write after Read ordering - An operation would write a register that

an earlier op will read.

51

52

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 27

SUNY – New Paltz
Elect. & Comp. Eng.

Commands that Follow a Branch
 Any valid command can follow a branch.

 If the branch evaluates true, the following command will be
“skipped”:
 Add/Sub/SL/SR will not write to array
 Store will not write to array
 Fetch will not return data
 Branch will evaluate to false (case of branch followed by branch)

 Response code of ’11’b for follower indicating above action has
occurred.

 Invalid OP codes are ignored and are NOT considered to “command
that follows a branch.”

SUNY – New Paltz
Elect. & Comp. Eng.
SUNY – New Paltz
Elect. & Comp. Eng.

Calc3 Block Diagram

Priority

Dispatch

Access

AdderALU
Input
Stage

Array write
and

output
stage

Array write
and

output
stage

Shifter

ALU
Input
Stage

resp1

resp4

resp3

resp2

cmd_in1

cmd_in4

cmd_in3

cmd_in2 Registers

Flow

53

54

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 28

SUNY – New Paltz
Elect. & Comp. Eng.

Calc3: Registers

 Data storage (registers, memories, etc) are assumed to
be Xs (unknown values) unless written to.

 This is true unless a specification clearly states that a
memory/register is reset to some value/pattern.

SUNY – New Paltz
Elect. & Comp. Eng.

Calc3: Add example

 Goal: Add 1+5 and output the result

 Command sequence:
Store, r1=0, 1
Store, r1=1, 5
Add, d1=0, d2=1, r1=0xF
Fetch, d1=0xF

55

56

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 29

SUNY – New Paltz
Elect. & Comp. Eng.

Calc3 Test Plan
 Command Summary

 0001 add
 0010 subtract
 0101 shift left
 0110 shift right
 1001 store
 1010 fetch
 1100 branch if zero
 1101 branch if equal

 Response Summary
 00: No Response
 01: Success
 10: over/underflow error
 11: skipped due to branch

What would you include in the test plan?

1. Design now has 16 internal data registers

2. Operand data is read internally from registers

3. Within each port’s instruction stream,
operations can complete out of order

4. There are no restrictions of this type across
different ports

SUNY – New Paltz
Elect. & Comp. Eng.

Calc3 Test Plan

 Again, start with 1 port….

 Initialize the registers (Store cmds)

 Validate registers got initialized (Fetch cmds)

 Test each command independently

 Add cases to test both Branch Taken, and Branch Not
Taken, for both branch commands.

57

58

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 30

SUNY – New Paltz
Elect. & Comp. Eng.

Calc3 Environment

CALC3

Gen1

Mon1 Mon2

Mon1 Mon2

Mon1 Mon2

ClockReset

Gen1

Gen1

Gen1

Mon1 Mon2

Unit Monitor

Register
Scoreboard

SUNY – New Paltz
Elect. & Comp. Eng.

Calc3 Checking

 How would you check the result of an operation?
 Would you access internal facilities?
 Would you do all checking at the end of the simulation?
 Would you do just-in-time checking during the run?

59

60

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 31

SUNY – New Paltz
Elect. & Comp. Eng.

Calc3 Checking

 Would you access internal facilities?
 Your environment would be tied to the implementation details. What

happens if the number of registers changes? Or the data storage is split
between memories?

 Would you do all checking at the end of the simulation?
 If you only check at the end of sim, the debug effort would increase. You

would know a register is not a correct value. But you would need to work
backwards to review when it went wrong.

 Would you do just-in-time checking during the run?
 If you generate Fetches to periodically read the registers, you can validate

the results during a run, without looking at internal signals.

SUNY – New Paltz
Elect. & Comp. Eng.

Calc3 Checking

 Should we look at internal signals to validate operations
immediately when they complete?
 Maybe. But only if really needed.
 It's suggested to start validating with only information from the

interfaces.
 If debug is too tedious, you can add tracing of internal signals to

speed up debug. (Printed only, not used for checking.)
 If there are still too many problems, yes, start using those

internal signals to enhance the checking.

61

62

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 32

SUNY – New Paltz
Elect. & Comp. Eng.

Calc3 Checking: Ordering Rules
 What do you need to store to validate the ordering rules?

Index0 Index1 Index2

Port1 Cyc1, Add, 0, 1, 2, T0 Cyc3, Shift, 0,1, 3, T1 Cyc5, Add, 0, 4, 5, T2

Port 2 Cyc3, Store, 15, 0xFC, T1 Cyc5, Fetch, 15, T0

Port 3 Cyc1, Add, 12, 13, 14, T0

Port 4 Cyc1, Add, 4, 5, 6, T1 Cyc3, Add, 6, 7, 8, T3 Cyc5, Shift, 9, 10, 11, T0

 Pretty much everything: Cycle, Cmd, d1, d2, r1, tag

SUNY – New Paltz
Elect. & Comp. Eng.

Calc3 Checking: Branches

 How can you handle checking the branch command function?
 Commands after a branch Taken, will be skipped.
 Skipped commands get a response of '11'

 What if no command is in stream for that port when the
branch completes?

63

64

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 33

SUNY – New Paltz
Elect. & Comp. Eng.

Calc3 Design Questions

 Q) What happens if 2 ports target the same register, and they both
get responses in the same cycle?
 A) The Adder always writes last
 A) The Shift always writes last
 A) The highest port number writes last
 A) It depends on the previous traffic
 A) I don't know. Let's define that.

 What happens if that written register is used for the next operation?
 Is there any pipeline data forwarding?
 Maybe we should force this case to see what happens.

SUNY – New Paltz
Division of Engineering Programs

Verification Tips

65

66

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 34

SUNY – New Paltz
Elect. & Comp. Eng.

Question the Specification
 Push back on the specification writer if needed
 Get clarity on ANYTHING ambiguous
 Are un-used signals required to be 0 while other parts of the bus

are valid?
 Are signals required to be 0 between valid operations?

 If there is a failure due to ambiguity in the spec, it's largely a
Verification Miss.

 Question Everything.

SUNY – New Paltz
Elect. & Comp. Eng.

Feedback to Designers
 Verification should be involved in design decisions.

 "Design For Verification"

 A small design change may have an enormous impact on the
verif env. Giving that feedback after the change is
implemented is too late.

67

68

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 35

SUNY – New Paltz
Elect. & Comp. Eng.

Prepare for Design Changes

 Design requirements may change during development. What
if you didn't get a chance to give feedback?

 How you structure the verif env implacts on how easily you
can adapt to changes.
 What if another Port is added?
 What if the number of registers is increased? Decreased?
 What if new command types are added?

SUNY – New Paltz
Elect. & Comp. Eng.

Prepare for Design Changes cont.

 Avoid Magic Numbers.
 Use a defined Constant
`ifndef REGWIDTH

`define REGWIDTH 32

`endif

It's easier to search/replace REGWIDTH, than "32".

 Use loops for constructing objects, using constants to
bound the loop.

 Avoid accessing internal signals unless necessary. Those
signals could be moved/removed at any time.

69

70

EGC455
Design and Verification of System on Chip

9/18/2021

Functional Verification Part III 36

SUNY – New Paltz
Elect. & Comp. Eng.

Asynchronous signals

 A design which has signals crossing clock domains (different
source oscillators)

 A design with inputs which are not governed by any clock

 All signals of this type should be clearly identified.

 Special testing is required to model the shifting alignment the
async signals may have in the final product

 This may even require a different simulator.

SUNY – New Paltz
Elect. & Comp. Eng.

Verification cycle

71

72

